
Épreuve de Physique - 3 Novembre 2025
Durée : 4h

Consignes :
— L’usage de la calculatrice est interdit.
— Un résultat d’application numérique ne doit pas contenir d’opérations ou de fonctions (fraction, racine, logarithme, etc.) et

sera compté comme faux s’il en contient.
— Les expressions littérales seront encadrées, et les applications numériques soulignées. Une application numérique sans unité

sera considérée fausse.
— Les trois parties sont indépendantes.
— Si vous constatez ce qui vous semble être une erreur d’énoncé, indiquez le sur votre copie. Vérifiez tout de même que l’erreur

ne provient pas de vous (homogénéité, ordre de grandeur, etc.).

1 Effet de Bokeh avec un appareil photographique numérique (APN)

Le Bokeh désigne le rendu flou hors de la zone de
netteté d’un APN. Sur l’image ci contre, l’appa-
reil en premier plan est vu net alors que la guir-
lande en second plan est vue floue. La forme du
flou peut être modifiée en changeant la forme du
diaphragme ou simplement en plaçant une feuille
perforée à la forme souhaitée devant l’objectif.
Une perforation en forme de sapin ou d’étoile ne
donnera pas la même forme de flou comme le
montre ces images.

On modélise l’objectif d’un APN par une combinaison d’un diaphragme et d’une lentille mince convergente dans les
conditions de Gauss, et son capteur par un écran. Les phénomènes reliés à la taille des pixels ou du diaphragmes ne sont
pas pris en compte.
La lentille, de distance focale image f ′, est placée à une distance d de l’écran. L’objet visé est à la distance D = 3f ′ de
la lentille et l’image est nette (rigoureusement) sur l’écran.

d D

Écran Lentille + Diaphragme

Objet

Figure 1 – Schéma simplifié d’un APN visant un objet.

1. Décrire ce que sont les conditions de Gauss.

Les rayons lumineux sont paraxiaux, c’est à dire peu inclinés et peu éloignés
de l’axe optique

/1 peu inclinés
/1 peu éloignés ("paraxiaux"

suffit à récupérer 2 points)

2. Faire un schéma optique sur votre copie de la situation représentée par la figure 1. Faire figurer sur l’axe optique
un point objet noté A, le centre optique et le foyer image F’ puis construire l’image A’ de A sur l’écran. Placer les
longueurs d, D et f ′ sur le schéma.
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écranplan focal
image

A A’O F’

/1 A, A’, F’, O représentés sur
l’axe optique

/1 Construction correcte, soit
par un foyer secondaire, soit
par un objet B hors axe.

/1 Longueurs d, D et f ′ repré-
sentées.

3. À partir de la formule de conjugaison de Descartes 1, exprimer d en fonction de f’. Vérifier le résultat à l’aide du
schéma de la question précédente.

1
D

+ 1
d

= 1
f ′ . Or D = 3f ′ donc d = 3

2 f ′ /1 distance et algébrisation
OA′ = D et OA = −d

/1 résultat
/1 Vérification d = 1, 5f ′ =

D/2

En plus de l’objet, un point lumineux est placé à l’infini sur l’axe optique de la lentille. L’image du point lumineux forme
une tache sur l’écran de diamètre ℓ. Le diamètre du diaphragme, considéré comme un disque dans un premier temps, est
noté L.

4. Faire un schéma conservant les proportions du précédent et en ajoutant des rayons lumineux provenant de l’infini
passant par les bords haut et bas du diaphragme. Repérer le diamètre de la tache ℓ et du diaphragme L.

/1 A∞F ′ puis prolongement
des rayons sur l’écran for-
mant une tache

/1 L et ℓ sur le schéma.

5. Déterminer la valeur du rapport L/ℓ.

L/ℓ = 2 /1 Thalès ou tangente

On remplace le diaphragme par une feuille cartonnée perforée. La perforation a une forme triangulaire comme sur la
figure ci-contre. Le but est de cherché la forme de la tache image du point lumineux sur l’écran.

x

y

R

θ

0 x

y

A’

Figure 2 – Feuille cartonnée perforée à gauche. Le triangle est équilatéral et son barycentre est sur l’axe optique. Les
pointes du triangle sont à la distance R du barycentre O (on considère la feuille et la lentille dans le même plan). À
droite est représenté le plan de l’écran centré sur A′ l’image de l’objet A. On gardera donc les mêmes axes utilisés pour
le diaphragme mais avec une origine différente.

1.
1

OA′
−

1
OA

=
1

OF′
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6. Montrer que la hauteur du triangle est 3R/2.

En découpant ce triangle en 6 triangles rectangles identiques de sommet O,
la longueur cherchée est la somme des deux cotés passant par O d’un seul
triangle. Or l’angle en O d’un de ces triangles vaut 2π/6 et son hypoténuse
R, l’autre côté vaut donc cos(2π/6)R = R/2. La somme vaut bien R+R/2.

/1 Justification avec schéma.

7. Faire un schéma optique dans le plan formé par l’axe optique et l’axe (Ox). On représentera l’ouverture de la feuille
cartonnée en respectant ses proportions. Faire apparaître la taille R et 3R/2 sur le schéma.

/1 Proportions respectées (ou-
verture décentrée, 2/3 vers le
haut, 1/3 vers le bas)

/1 Tracé des rayons

8. En déduire la position et la taille de la tache lumineuse sur ce schéma.

La taille du faisceau est diminuée de moitié d’après la question 5, donc la
tache sur l’écran est de taille 3R/4 et est décentrée : le sommet du triangle
se retrouve en x = -R/2 dans le plan (A’xy).

/1 Position (décentrée 2/3 vers
le bas, 1/3 vers le haut)

/1 Taille (3R/4)

9. Généraliser le résultat pour en déduire la forme, la taille et la position de la tache lumineuse dans le plan A’xy.
Faire un dessin pour illustrer le résultat.

x’

y’

R/2

/1 La forme de la tache est ob-
tenue en faisant une homo-
thétie de centre O du triangle
en réduisant de moitié ses di-
mensions.

2 Miroir de Lloyd

Le dispositif de Lloyd permet d’obtenir des in-
terférences à deux ondes. Il consiste en un miroir
plan et un écran, éclairés par une source S suppo-
sée ponctuelle et monochromatique de longueur
d’onde λ placée très proche du miroir. On in-
dique que la réflexion sur le miroir entraîne un
déphasage de π de l’onde réfléchie, ou de façon
équivalente augmente le chemin optique de λ/2.

10. Montrer que le dispositif est équivalent à des trous d’Young. On pourra faire intervenir l’image S′ de la source S
par le miroir.
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La réflexion d’un rayon sur le miroir arrivant en M (quelconque) provient
virtuellement du point image S’ de S à travers le miroir. Tout se passe comme
si S et S’ était des points source synchrones : l’expérience est bien équivalente
à celle des trous d’Young.

/1 Schéma ou explication du
point image traité comme
point source.

11. Déterminer au point M la différence de marche,

Démonstration classique avec approximations h, y ≪ D. δ = 2hy/D
/1 Définition δ = S′M − SM

/1 Expression S’M et SM avec
pythagore

/1 Approximation h, y ≪ D

/1 Résultat

12. Utiliser la formule de Fresnel pour donner le profil d’intensité sur l’écran. En déduire l’interfrange i.

Si la formule n’est pas à retenir, ce qui est "dans le cos" l’est ! Le profil
d’intensité varie en cos(2πδ/λ). Une frange claire est au centre en y=0 car les
sources S et S’ sont en phase (ce sont les mêmes). L’interfrange correxspond à
la plus petite distance sur l’écran entre deux maxima, soit 2π(2hi/D)/λ = 2π
donc i = λD/2h

/1 Intérieur du cos juste
/1 Définition interfrange
/1 Résultat

13. On décale la source de ∆h et on mesure i′ = 1, 5i. Décrire la nouvelle figure d’interférences et exprimer la longueur
d’onde λ en fonction des données du problème.

i′/i = h/(h + ∆h) D’après la formule de l’interfrange soit ∆h = −h/3. On
a rapproché la source du miroir, les franges se sont espacées.

/1 Les franges s’espacent
/1 Expression de ∆h/h avec

signe -

14. On remplace la source ponctuelle par une fente. Que devient la figure d’interférence ?

Les anneaux sont remplacés par des traits. /1

3 Stocker l’énergie avec un condensateur (basé sur le concours EPITA)

Document :
En 2009, la RATP et Alstom ont expérimenté en service commercial un
tramway Citadis équipé de supercondensateurs sur la ligne T3 du réseau
francilien. La rame a été équipée de 48 modules de supercondensateurs
(15 kg pièce) pour le stockage de l’énergie à bord. L’ensemble est
équivalent à 48 supercondensateurs montés en dérivation sous une
tension de 750 V. Ceci permet aux trams de circuler en autonomie sur
les sections dépourvues de ligne aérienne de contact. En autonomie
la rame peut franchir 400 m, soit la distance entre deux stations
sur la ligne T3, avec une vitesse moyenne d’environ 15 km/h. Les
moteurs développent une puissance moyenne continue de 500 kW,
et sont alimentés sous 750 V. Présentant une résistance interne très
faible, les supercondensateurs autorisent le passage d’intensités très
importantes pendant les 20 secondes que dure un rechargement en sta-
tion, et sont donc en cela plus adaptés que les batteries conventionnelles.

3.1 Supercondensateurs
On donne : 4 × 3,6/3 = 4,8 ; 4/(3 × 3,6) = 0,37 ; 3/(4 × 3,6) = 0,21 ; 20/7,52 = 3,6 ; 7,52/20 = 0,28.
Un “supercondensateur” est un condensateur de technique particulière, qui permet d’obtenir une capacité élevée pour un
encombrement réduit, et donc une densité de puissance et une densité d’énergie intermédiaires entre les batteries et les
condensateurs électrolytiques classiques. Ils sont utilisés dans des domaines variés, dont la propulsion de bateaux, de bus
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ou de tramway. Leur faible résistance interne permet des courants élevés et donc des charges rapides et des puissances
de sortie importantes. L’étude porte ici sur des supercondensateurs, en particulier ce qui contraint leur dimensionnement
(capacité, résistance interne).
À partir des données du document ci-dessous et des approximations nécessaires, en déduire les valeurs :

15. de l’énergie nécessaire au trajet entre deux stations,

Energie nécessaire au trajet de 400m =
500000︸ ︷︷ ︸

Puissance moyenne développée par les moteurs

× 400/(15/3, 6)︸ ︷︷ ︸
temps moyen pour parcourir 400m

=

4,8 × 107 J

/1 Hypothèse simplifica-
trices : puissance et vitesse
constante.

/1 variation d’énergie = puis-
sance x durée

/1 Résultat avec unité

16. de la capacité d’un des 48 supercondensateurs (commenter la valeur trouvée),

∆E = Energie stockée dans un condensateur = Energie nécessaire au trajet
de 400m / 48. Or ∆E = CU2/2 avec U = 750 V (cf document pour la
valeur + condensateurs montés en parallèle => même tension aux bornes de
chacun d’entre eux). L’AN donne C = 3,6 F.

/1

17. de la résistance du circuit de charge.

En supposant le temps de chargement étant de 3RC (charge à 95% d’un
condensateur dans un circuit RC série), R vaut 20/(3, 6 × 3) = 0,37 Ω.

/1

3.2 Charge d’un condensateur
Lorsqu’un condensateur est utilisé comme une batterie, la question de sa recharge se pose. L’énergie est prélevée sur le
réseau électrique, et on souhaiterait que 100% de cette énergie soit transférée au condensateur. Nous allons montrer que
ceci dépend de la stratégie de charge retenue. On appelle “rendement de la charge du condensateur” le rapport entre
l’énergie stockée par le condensateur à l’issue de la charge et de l’énergie fournie par le générateur au cours de cette
charge :

η = Estockée
Efournie

(1)

De manière générale, la charge se fait à travers la résistance totale du circuit R. On note C la capacité du condensateur
et E la tension finale à atteindre aux bornes du condensateur.

18. Montrer par des arguments dimensionnels que l’expression du rendement η ne peut pas dépendre des valeurs de R,
C ou E.

η est par définition adimensionné. D’après les lois de comportement des résis-
tances et des condensateurs dim(R) = dim(E)/I et dim(C) = IT/dim(E).
Il n’y a pas de combinaisons possibles pour obtenir une quantité adimensionné
avec cet ensemble de valeurs, il faut nécessairement introduire une nouvelle
variable pour éliminer dim(E), I ou T .

/1

Les sous-parties suivantes se réfèrent au circuit ci-contre pour étu-
dier deux méthodes de recharge menant à deux valeurs de rende-
ment différentes.
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3.2.1 Premier procédé de charge

L’interrupteur K est d’abord dans la position intermédiaire où il n’établit aucun contact. Le condensateur étant initialement
déchargé, on bascule l’interrupteur K dans la position (2) à t = 0.

19. Établir l’équation différentielle portant sur uc(t). On la mettra sous la forme duc

dt
+ uc

τ
= E

τ
, avec τ un paramètre

dont on précisera l’expression.

0 sans les bonnes notations uc, ic ou l’introduction de "UR" sans produire
un schéma où il apparaît.

— Loi des mailles uc = E + UR avec bonne notations et UR à placer sur
un schéma dans le sens de ic

— Loi d’Ohm U = −Ric avec bonne notations

— Loi de comportement de C ic = C
duc

dt
avec bonne notations

/1 Loi des mailles
/1 Loi d’Ohm (U = ±Ric en

fct de la convention choisie
sur le schéma)

/1 ic = Cu̇c

20. Déterminer sans utiliser l’équation différentielle la valeur de uc(0+), juste après le basculement de l’interrupteur.

D’après la loi de comportement du condensateur, le courant le traversant
étant proportionnelle à la dérivée de la tension à ses bornes, il ne peut y avoir
de discontinuité de cette dernière qui donnerait un courant infini dans le cas
contraire. La tension est donc nulle juste après la fermeture de l’interrupteur.

/1 Impossibilité d’une disconti-
nuité de tension

21. Résoudre l’équation différentielle obtenue ci-dessus.

uc(t) = A exp(−t/τ) + E addition de la solution particulière avec la solution
générale. D’après la condition initiale et la question précédente, en t = 0,
uc(0) = 0 V, donnant A = −E. Il vient qu’après la bascule de l’interrupteur
en position (2), uc(t) = E(1 − exp (−t/τ))

/1 solution générale + particu-
lière

/1 condition initiale

22. Tracer l’allure de la solution uc(t).

t

uc

E

τ

0,63E

0

/1 Allure en -exp et axes (temps
, uc)

/1 Repérage début (0,0) et li-
mite (+∞, E)

/1 τ présent sur le schéma.

23. Donner en fonction de C et de E l’expression de l’énergie stockée par le condensateur à la fin de sa charge.

1
2CE2 ("donner" pas "démontrer")

/1 Formule

24. Démontrer que le courant ic s’écrit, pour tout t ≥ 0 : ic(t) = E

R
e−t/τ .
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Deux méthodes : soit en utilisant la loi de comportement du condensateur,
soit la loi d’Ohm + loi des mailles. Pour la première, en utilisant le résultat

de la question 21 ic = C
duc

dt
= C

(
E

τ
exp(−t/τ)

)
= E

R
exp(−t/τ)

/1 Calcul de dérivée C ou de dif-
férence avec R. Aucun point
+ correcteur agacé si le ré-
sultat de la question 21 est
faux et qu’on retrouve "ma-
giquement" (= entourloupe
= honnêteté intellectuelle à
zéro) ce résultat.

25. Calculer alors l’énergie électrique fournie par le générateur sur l’ensemble de la charge.

L’énergie électrique fournie par le générateur vérifie par définition ∆Eg =∫ ∞
t=0 Eicdt (intégrale de la puissance fournie donc en utilisant la convention

générateur). On peut remarquer pour simplifier les calculs que ic est reliée à
la dérivée de uc avec la loi de comportement du condensateur. On obtient :
∆Eg = EC

∫ ∞
t=0

duc

dt
dt = EC [uc]∞0 = CE2. En supposant E = 750 V et en

prenant C = 3, 6 F, ∆Eg = 2, 0 MJ.

/1 Définition
/1 Expression littérale CE2

+1 Calcul (erreur d’énoncé ?)

26. Quelle est la valeur du rendement de la charge (défini par l’expression (1)) avec la méthode envisagée ? Peut-il être
optimisé en changeant la résistance R ?

Le rendement est donné par le rapport entre l’énergie stockée par le conden-
sateur et l’énergie fournie au système (par le générateur), soit un rendement
de 50% (1/2CE2/CE2)). Ce résultat semble indépendant de la résistance
utilisée.

/1 50%
/1 Aucun effet de la résistance

sur ce rendement.

3.2.2 Second procédé de charge

On souhaite utiliser une méthode qui permet d’améliorer le rendement de la charge. On réalise une charge en deux temps.
Le condensateur est initialement déchargé. L’interrupteur K est d’abord dans la position intermédiaire où il n’établit aucun
contact. Puis il est fermé en position (1) à t = 0. Lorsque le régime transitoire qui s’ensuit est achevé, l’interrupteur est
basculé en position (2).

27. Déterminer l’expression de uc(t) pendant la première phase de la charge.

La seule différence avec la situation précédente est la tension du générateur
qui vaut maintenant E/2, il vient alors : uc(t) = E

2 (1 − exp(−t/τ))

/1 Résultat (changer E en E/2)

28. Déterminer en fonction de R et de C l’expression de l’instant t1 pour lequel la tension uc aux bornes du condensateur
atteint 99% de sa valeur finale au cours de cette première étape.

exp(−5) ≃ 0, 01 (connu pour 5τ) soit t1 = 5RC /1 t1 = 5RC

Dans la suite, la charge est supposée totalement achevée à cet instant t1 (i.e. uc(t1) ≃ E/2). La phase 2 est alors
déclenchée (basculement de l’interrupteur en position (2)).

29. Exprimer la tension uc(t) aux bornes du condensateur au cours de la deuxième phase de charge, qui commence à
l’instant t1.

uc(t) = A exp(−t/τ) + E avec comme condition initiale (par continuité
de la tension aux bornes de C) uc(t−

1 ) = uc(t+
1 ) = E/2. Il vient E/2 =

A exp(−t1/τ)+E soit A = −E/2 exp(t1/τ). En combinant les expressions :
uc(t) = −E

2 exp(−(t − t1)/τ) + E

/1 Condition initiale et conti-
nuité de tension (en t=t1).

/1 Expression de A
/1 résultat

30. Tracer l’allure de uc(t) en fonction du temps au cours de l’ensemble des deux phases de charge.
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t

uc

E

E/2

t10

/1 deux exp(−t/τ) avec ampli-
tude de E/2

/1 t = 5τ uc = E/2

31. Exprimer l’intensité ic qui traverse le condensateur pendant les deux phases de charge. On distinguera les cas en
fonction de t.

Phase 1 : E

2R
exp(−t/τ), Phase 2 : E

2R
exp(−(t − t1)/τ)

/1 Amplitude E/2R
/1 décalage temporel t1 pour la

phase 2.

32. Déterminer l’énergie électrique fournie par les deux générateurs pendant la charge. On utilisera e−5 ≃ 0.

Phase 1 : CE/2[uc]t1
0 ≃ CE2/4, Phase 2 : CE[uc]∞t1

≃ CE(E − E/2) =
CE2/2

/1

33. En déduire le rendement pour cette nouvelle façon de procéder. Conclure quant aux avantages et désavantages par
rapport à la première méthode.

η = Estockée

Efournie
=

1
2 CE2

3
4 CE2 = 1/2

3/4 = 2
3

η ≈ 67%

Avantages : Meilleur rendement (67% contre 50%). Inconvénients : Circuit
plus complexe nécessitant deux générateurs et un système de commutation.
Temps de charge plus long.

/1 Valeur
/1 Avantage
/1 1 inconvénient

3.2.3 Généralisation à N étapes

Le but est ici de généraliser l’étude précédente à N étapes dans le but d’améliorer le rendement lors du processus de
charge (le raisonnement ne se fait plus à partir du schéma). Soit t0 = 0 l’instant initial où le condensateur est déchargé.
La première étape a lieu de t0 à t1 = 5τ , par un générateur de tension E/N , à travers une résistance R. De manière
générale, l’étape numéro k de la charge (k = 1 à N) a lieu de tk−1 à tk, par un générateur de tension kE/N , à travers une
résistance R, avec tk = k × 5τ . Au début de l’étape k, uc(tk−1) = (k − 1)E/N , et à la fin de l’étape k, uc(tk) = kE/N .
Lors de l’étape k de la charge, déterminer (notamment en fonction de k et de N) :

34. l’équation différentielle suivie par la tension uc(t) aux bornes du condensateur, puis l’expression de sa solution
uc(t),
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À l’étape k, le générateur impose une tension kE/N .
Équation différentielle :

duc

dt
+ uc

τ
= kE

Nτ

Solution générale : uc(t) = kE
N + Be−(t−tk−1)/τ (il est plus simple d’écrire

la constante "A" vu dans le cours devant l’exponentielle sous la forme A =
Betk−1/τ où B est une constante à déterminer toujours avec les conditions
initiales (lorsque t = tk−1).
Condition initiale : uc(tk−1) = (k−1)E

N

(k − 1)E
N

= kE

N
+ B ⇒ B = − E

N

uc(t) = kE

N
− E

N
e−(t−tk−1)/τ = E

N

(
k − e−(t−tk−1)/τ

)
Pour tk−1 ≤ t ≤ tk.

/1

35. l’expression de l’intensité ic(t) traversant le condensateur,

Expression de ic(t)

ic(t) = C
duc

dt
= C × E

Nτ
e−(t−tk−1)/τ

ic(t) = E

NR
e−(t−tk−1)/τ

/1 ED
/1 Solution générale et particu-

lière
/1 Condition initiale
/1 Expression finale

36. l’expression de l’énergie fournie par le générateur (on utilisera e−5 ≪ 1).

Ek =
∫ tk

tk−1

kE

N
× E

NR
e−(t−tk−1)/τ dt

Ek = kE2

N2R

∫ 5τ

0
e−u/τ du = kE2

N2R
× τ(1 − e−5)

Avec e−5 ≪ 1 :

Ek = kE2τ

N2R
= kCE2

N2

/1 Expression

En déduire ensuite :
37. l’expression de l’énergie fournie par le générateur lors de l’ensemble de la charge,

Efournie =
N∑

k=1
Ek =

N∑
k=1

kCE2

N2 = CE2

N2

N∑
k=1

k

N∑
k=1

k = N(N + 1)
2

Efournie = CE2

N2 × N(N + 1)
2 = CE2(N + 1)

2N

/1 Somme des Ek

/1 Somme des entiers de 1 à N
/1 Résultat

38. puis montrer enfin que le rendement de la charge en N étapes s’écrit η = N

N + 1 .
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η = Estockée

Efournie
=

1
2 CE2

CE2(N+1)
2N

=
1
2 CE2 × 2N

CE2(N + 1)

η = N

N + 1

Remarque : Pour N = 1 : η = 1/2 (premier procédé). Pour N = 2 : η = 2/3
(second procédé). Quand N → ∞ : η → 1 (rendement optimal).

/1 Utilisation de la question pré-
cédente (si juste) et résultat

/1 Commentaire avec N = 1 ou
N = 2 ou N ≫ 1

⋆ ⋆ ⋆ Fin du sujet ⋆ ⋆ ⋆
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